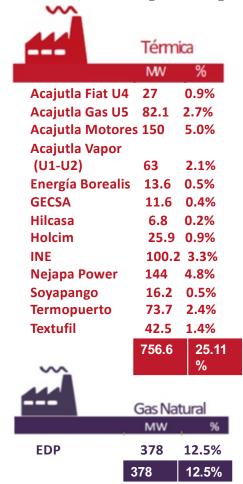
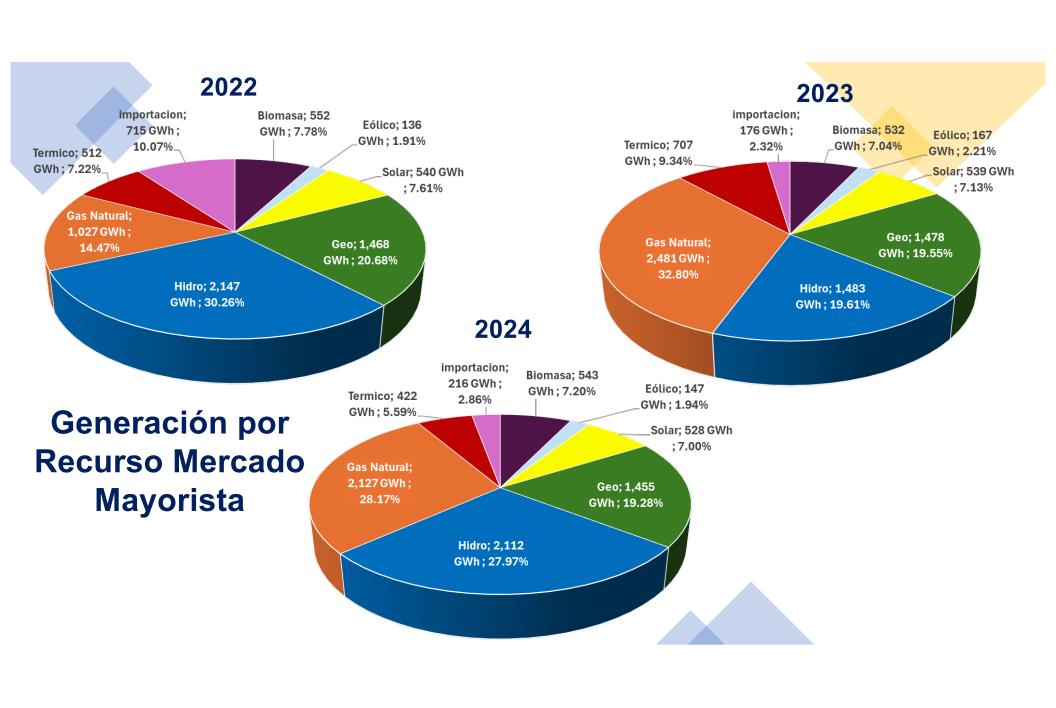

PANORAMA DEL ALMACENAMIENTO DE ENERGÍA EN EL SALVADOR


Evolución de la capacidad instalada en MM 1954-2023

Capacidad Instalada por planta generadora 2024

Hidráulica			
	MW	%	
15 de sep	180	6.0%	
5 de nov	180	6.0%	
Cerrón Grande	172.8	5.7%	
Guajoyo	19.8	0.7%	
3 de Febrero	66	2.2%	
	618.7	20.53 %	

1	Biomasa	
	MW	%
CASSA	123.4	4.1%
El Ángel	98.8	3.3%
Jiboa	42.65	1.4%
La Cabaña	33.5	1.1%
	298.4	9.90%



	Geoté	rmica %
Ahuachapán Berlín	95 109.4 204.4	3.2% 3.6% 6.78%

/	Eólica MW %	
Ventus	54 54	1.8% 1.8%

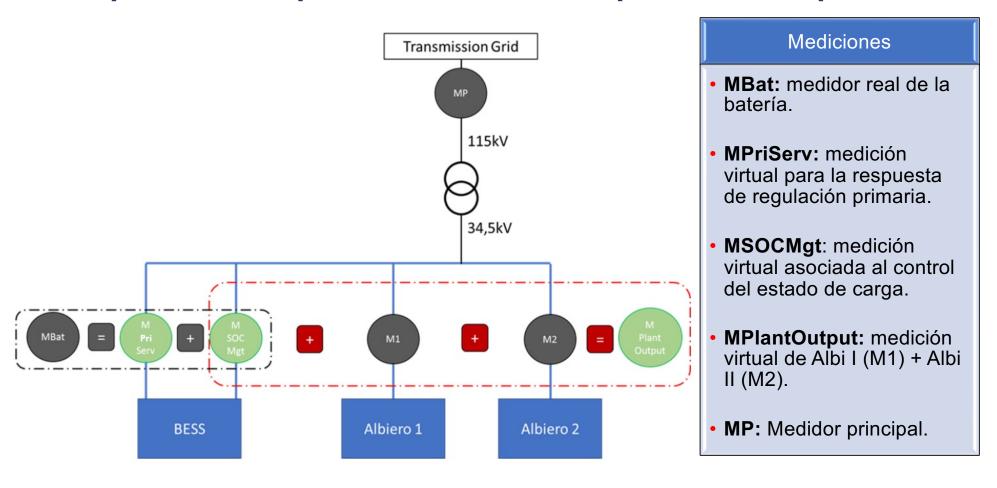
M s	olar foto	voltaica	
	MW	%	
Albireo	115	3.8%	
Antares	60	2.0%	
EcoSolar	9.9	0.3%	
INE Solar	13.2	0.4%	
Márquez	6	0.2%	
Remedios	20	0.7%	
Sonsonate	10	0.3%	
Trinidad	8	0.3%	
	242.1	8.03%	
Generación distribuida			
	MW	%	
Biogás	8.7	0.3%	
PCH	21.4	0.7%	
SFV	431.	4 14.3%	
	461.5	15.3%	

CAPACIDAD TOTAL: 3,013.6 MW

Almacenamiento de energía Flexibilidad

El Salvador ha avanzado en el desarrollo de su infraestructura energética, con una matriz que 60% tiene más de de participación de fuentes de energía de recursos renovables, con el fin de agilizar el camino hacia transición energética la independencia energética de los combustibles fósiles.

A medida que aumenta la penetración de las energías renovables, existe la necesidad de una mayor flexibilidad en los sistemas de energía


El almacenamiento de energía, debido a su enorme gama de usos y configuraciones, puede ayudar a la integración de las energías renovables de muchas maneras. Estos usos incluyen, entre otros:

- Balance generación carga
- Servicios auxiliares
- Reservas operativas
- Seguimiento de carga
- •Gestionar la incertidumbre en la generación de energías renovables a través de reservas
- Alivio de Congestiones
- •Suavizar la producción de las plantas de energía renovable individuales.
- Restablecimiento
- •Alamcenamiento a largo plazo

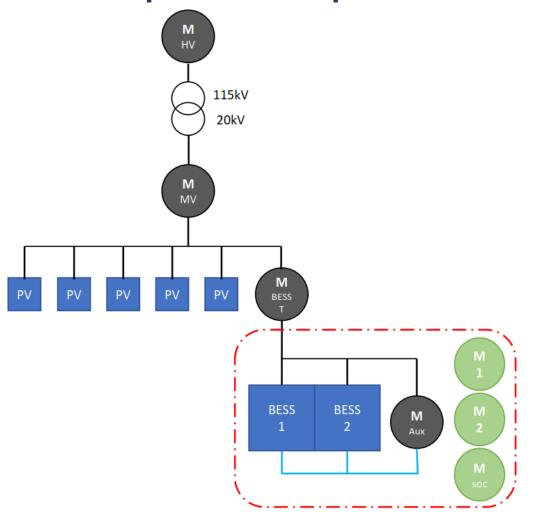
Estado de la Regulación

- Actualmente no se cuenta con una reglamentación específica para la instalación y operación de sistemas de almacenamiento.
- Se ha efectuado la evaluación de los sistemas de almacenamiento para prestar el servicio de reserva primeria y secundaría.
- Se ha habilitado un sistema de almacenamiento para prestar el servicio de reserva primaria y secundaria en dos centrales Fotovoltaica (Albireo y Antares).
- El sistema de almacenamiento se considera actualmente como parte de la planta, limitando su operación en las horas solares.

Esquema de implementación actual para reserva primaria

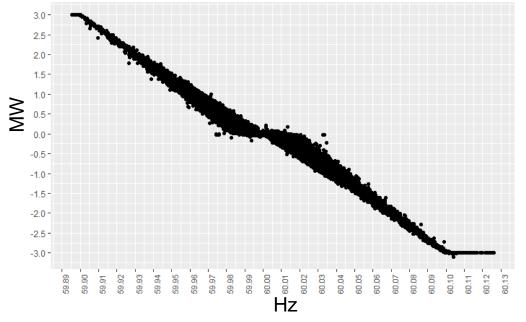
Señales SCADA para monitoreo de la regulación primaria

Señales:


- Potencia de regulación primaria.
- Estado de carga de la batería.
- Potencia para el control del estado de carga.

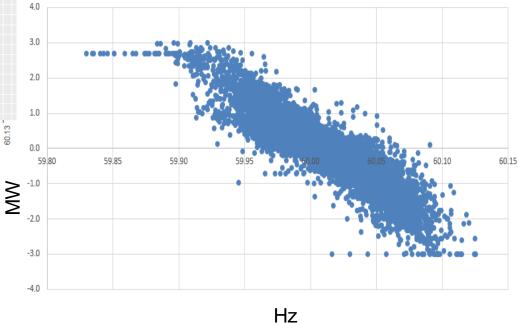
Curva de respuesta de reserva primaria

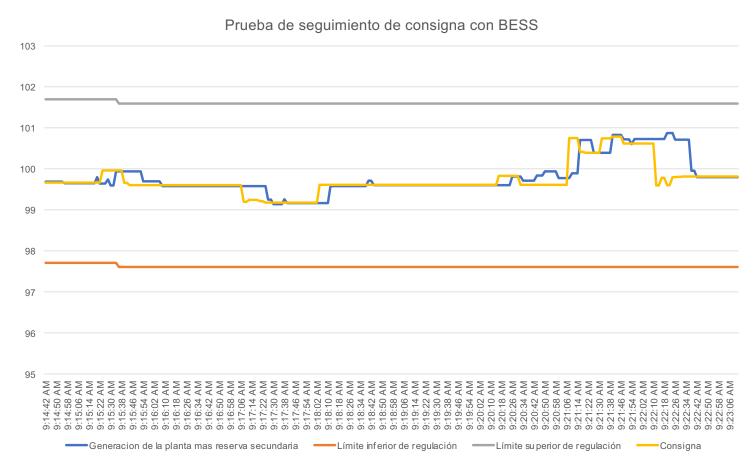
¹ 3% de la generación en tiempo real


Esquema de implementación con reserva secundaria

Mediciones

- MBESST: medidor real del conjunto de baterías.
- M1: medición virtual para la respuesta de regulación primaria.
- M2: medición virtual para la respuesta de regulación secundaria.
- MSOC: medición virtual asociada al control del estado de carga.
- MPlantOutput: medición virtual de Albi I (M1) + Albi II (M2).
- M (HV y LV): Medidores principales.
- Maux: Medidor de consumo de equipos auxiliares.
- Un medidor real para el conjunto de las baterías (MBESS).
- Controladores independientes para regulación primaria y secundaria.
- Uso de medidores virtuales para reserva primaria y secundaria.

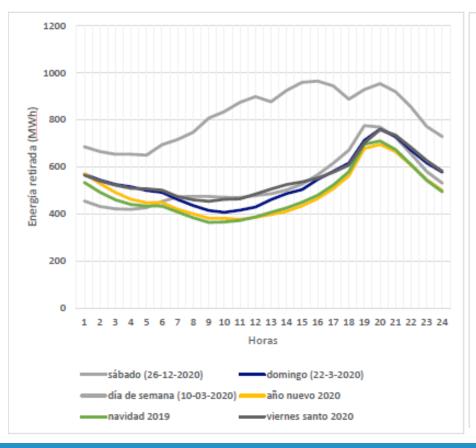

Respuesta de regulación primaria

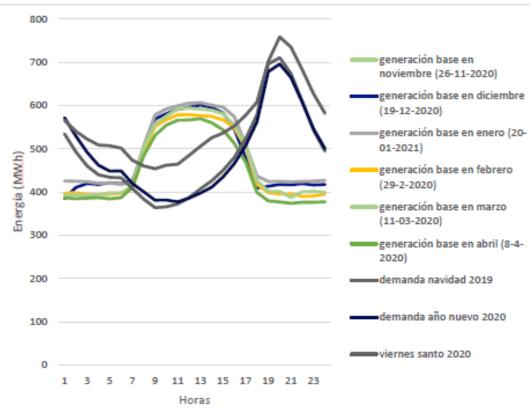

Verificación de BESS con GUA-MEX abierta, con banda muerta de +/- 0.03 Hz. Mediciones cada 4 s.

Verificación de BESS en fase de prueba, con banda muerta de +/- 0.01 Hz para aumentar sensibilidad.

Mediciones cada 0.1 s.

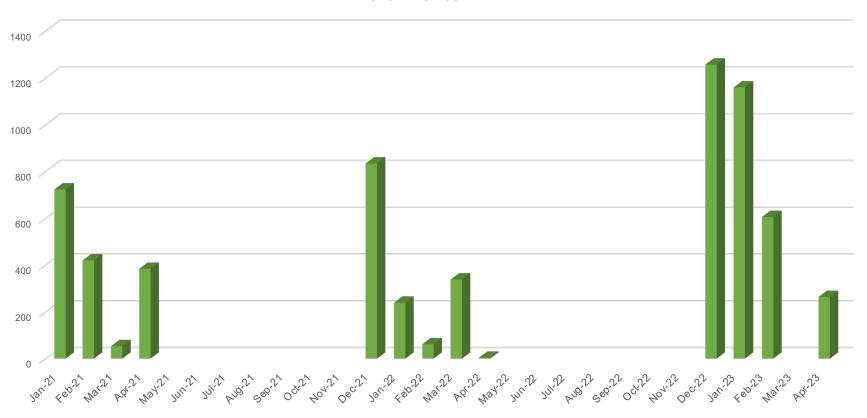
Respuesta de regulación secundaria (prueba)




Prueba con BESS instalada para respuesta bajo AGC

Vertimiento de Energía Renovable

- El rápido crecimiento de la generación renovable variable ha provocado que la generación base, supere la demanda mínima del sistema en ciertos períodos, requiriendo el vertimiento de energía renovable.
- Se creó un mercado de flexibilidad con normas que rigen la administración de vertimiento de recursos de generación base ante condiciones operativas con demanda de potencia muy baja y que requieren maniobras para mantener el balance carga-generación en el área de control.
- Los sistemas de almacenamiento aún no se encuentran considerados de manera explicita en esta normativa.


Antecedentes del efecto de vertimiento

Evolución de Vertimiento de Energía.

Vertimiento MWh

Consideraciones importantes

- La normativa debe contemplar un mecanismo que permita separar las transacciones resultantes de los Sistemas de Almacenamiento en los diferentes servicios que brinden al sistema, con el fin de identificarlos correctamente a efectos de la liquidación de sus transacciones.
- Se considera que para obtener rentabilidad, los sistemas de almacenamiento con baterías deberían orientarse a que participen en todos los mercados: servicios auxiliares, energía, capacidad firme, para que éstas puedan competir con el resto de participantes de mercado en igualdad de condiciones, lo que se desarrollará de forma gradual.
 - Definir a los sistemas de almacenamiento como instalaciones particulares, con la capacidad de inyectar y retirar energía del sistema.
- Operar los sistemas de almacenamiento sin necesidad de coincidir con la inyección de las unidades generadoras de una central.
- Es necesario reconocer los costos de operación de los Sistemas de Almacenamiento, entorno a su eficiencia y mantenimiento.

Desafíos Regulatorios

Para impulsar la inclusión de sistemas de almacenamiento en El Salvador es necesario efectuar cambios normativos que permitan:

- 1. Especificar los requerimientos técnicos mínimos que los sistemas de almacenamiento deben cumplir para su operación con base en el servicio a brindar.
 - Capacidad de almacenamiento.
 - Potencia.
 - Tiempos de respuesta.
 - Señales de control y monitoreo, entre otros
- 2. Definición de reglas para la asignación y verificación de los servicios a ser prestados por los sistemas de almacenamiento.
- 3. Definición de metodología para la identificación de los servicios brindados y la conciliación de transacciones en las que se ven involucrados los sistemas de almacenamiento.
- 4. Habilitar la instalación y conexión de sistemas de almacenamiento no solo a generadores.
- Definición de un Participante de Mercado "Almacenador", incluyendo sus características, y servicios que podría brindar al sistema.

Consultorías y avance en la regulación

EL Salvador esta desarrollando esfuerzos por medio del desarrollo de diferentes estudios y consultorías para definir una normativa que viabilice la instalación de sistemas de almacenamiento en el Mercado Eléctrico Salvadoreño, tanto a nivel de Transmisión como Distribución.

- En 2023, con el apoyo del BID, la DGEHM participó una Serie de Talleres Integrados denominados "Acelerando el Almacenamiento de Energía en los Países RELAC".
- En el 2024, la Unidad de Transacciones efectuó una consultoría apoyada por GET.transform titulada "Incorporación de SAEB en el mercado mayorista de El Salvador para la provisión de servicios auxiliares".
- En 2024 con apoyo del Banco Mundial se preparó para SIGET un informe denominado "Mecanismos de apoyo al desarrollo del almacenamiento eléctrico de corto plazo".
- A finales de 2024 SIGET inició un Estudio sobre la "integración al Mercado Mayorista de Sistemas de Almacenamiento de Energía con base en Baterías" con el apoyo del Banco Mundial.

Consultorías y avance en la regulación

A través de la DGEHM se están gestionando cooperación técnica para las siguientes iniciativas:

"Modernización Digital del sector energético de El Salvador: Introducción Tecnologías digitales y almacenamiento", actualmente se tienen gestiones con el BID, AECID, GLOBAL GATEWAY y KIAT ODA (Corea).

Capacitación "Evaluación del almacenamiento de energía con fuentes de energía renovable en sus diferentes aplicaciones (Movilización de demanda, Regulación de frecuencia, vertimientos, etc.) A través del software SimSEE" con BID

Conclusiones

- 1. Los sistemas de almacenamiento son esenciales para continuar impulsando el desarrollo de proyectos con base energías renovables no convencionales variables.
- 2. Debido a la alta gama de servicios que los sistemas de almacenamiento pueden aportar al sistema, se requiere de conocimientos técnicos y experiencias de países que ya han avanzado en esta temática.
- 3. Todos los insumos que se están obteniendo de las diferentes consultorías permitirán el desarrollo de la normativa técnica requerida.
- 4. Para contar con una regulación integral que permita la instalación, operación y desarrollo de sistemas de almacenamiento en El Salvador, es necesario efectuar de cambios normativos, tanto a nivel de la Ley General de Electricidad, su reglamento y el Reglamento de Operación del Sistema de Transmisión y del Mercado Mayorista (ROBCP).

Siguientes Pasos

- Finalizar la revisión de la normativa vigente y análisis de los incentivos para proyectos de almacenamiento de energía.
- Finalizar el Estudio de viabilidad de diferentes tecnologías de almacenamiento, como baterías de iones de litio, almacenamiento por bombeo y otras alternativas.
- Consulta con stakeholders, incluidos especialistas del sector, para definir necesidades y prioridades en el almacenamiento.
- Desarrollo de una hoja de ruta para la implementación de soluciones de almacenamiento en el corto, mediano y largo plazo.

